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1 Great Expectations

When Muth (1961) introduced the rational-expectations hypothesis (REH), his ba-
sic idea was that agents form expectations by rationally acquiring and processing
information (weak REH). From this, he immediately jumped to a stronger hypothe-
sis (strong REH), which in the following years radically transformed macroeconomic
theory and policy. The strong REH is implied by the assumption that agents know
the true (statistical) model of their environment. Except for trivial cases, this model
comprises a causal model relating endogenous to exogenous variables, and objective
probability distributions of the exogenous variables. Agents’ expectations are the
objective probability distributions of future developments conditional on their cur-
rent information about past realizations of exogenous and endogenous variables. In
terms of the famous Knightian distinction, the strong REH implies risk and not
uncertainty. Rationality then requires that agents choose a strategy (i.e., a plan
specifying actions for all contingencies) that maximizes the expected utility on the
basis of a v. Neumann–Morgenstern (NM) utility function.1

However, the optimistic spirit of the “rational expectations revolution” (Begg
1982) has long since evaporated. Theoretical and empirical weaknesses of the strong
REH have become apparent, and there seem to be good arguments for going back to
the weak REH. Rationally acquiring and processing information without knowing
the true statistical model of the environment (́ı.e., under conditions of uncertainty
rather than risk) means rational learning, which is the domain of the subjectively
expected utility (SEU) theory a.k.a. Bayesianism.2

1Cf. Pearl (2000) for a discussion of causality in relation to statistics. Cf. Hacking (1990) on
objective vs subjective probabilities. For strict subjectivists, the strong REH makes sense only
for a group of agents, where it translates into the Common Prior Assumption (cf. Aumann 1987:
12ff). See also 2.1 below.

2For critical discussions of the strong REH cf. Frydman and Phelps (1983) and Pesaran (1989);
for an overview of the learning literature cf. Kirman and Salmon (1995).
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The simplest version of Bayesian learning requires the agent to proceed from a
subjective joint probability distribution for all conceivable future observations. This
distribution reflects personal degrees of belief . The optimal strategy maximizes
subjectively expected utility. The initial subjective distribution, the so-called prior
distribution, is again revised by conditioning on observed events, which yields the
so-called posterior distributions. The whole revision process, which is equivalent to
the use of Bayes’ theorem, is also called “updating the prior” because the posterior
at one stage of the process serves as the prior on the next.

Bayesianism’s claim to importance rests on the possible use of a two-stage proce-
dure for deriving the prior. The agent first considers several models (or hypotheses
or theories; we use these terms interchangeably) since the true model is unknown.
Each model leads to different expectations. Then a prior over the set of models
is chosen, which leads to a weighted average of the model-specific expectations.
Updating the prior implies a shift in the weights of the models. This two-stage pro-
cedure connects Bayesianism with scientific procedures, leading to a unified theory
of rationality in economics, statistics and practical decision making.3

In a Bayesian context, the strong REH is implied by the assumption that the
agent’s prior is degenerate and assigns probability 1 to the true model (true beliefs).
Even without true beliefs, however, rational expectations are possible. Suppose
that Adam the Agent tries to predict the outcome of once tossing a fair coin, and
that he considers two hypotheses, namely, a probability of head equal to 0.25 or
0.75, respectively. Adam has rational expectations if his prior assigns a probability
of 0.5 to each of the two hypotheses, implying that he assigns zero probability
to the truth. By definition, rational expectations only require that the subjective
probability distribution of the observable variables implied by the prior coincides
with the corresponding objective probability distribution (Pesaran 1989: 1).

Does Bayesian learning converge to rational expectations? Again, early optimism
turned into disappointment. Even the beliefs of an ideal Bayesian learner who does
not dismiss the true model from the outset and who faces no costs of gathering
further information are not inevitably bound to converge to rational expectations
(Blume and Easley 1995: 16-20).

It is not clear, however, what lesson, if any, should be drawn from the possible
failure of convergence. A non-convergent learning process is not necessarily an in-

3The classical exposition of Bayesianism is Savage (1954); see also Kiefer and Nyarko (1995)
for a summary and defense emphasizing learning and expectations formation. The approach of
Anscombe and Aumann (1963) is appropriate if beliefs refer to objective probability distributions.
For a single agent or under the Common Prior Assumption (see 2.1 below), weak and strong REH
are formally identical, because the models can be treated like unobservable exogenous variables
with a given known distribution (namely, the prior).
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dication of misguided decision making (Kiefer and Nyarko 1995). The justification
of the Bayesian approach lies not in the convergence properties of Bayesian learning
but in the appeal of certain axioms for preferences on the set of strategies. These
axioms ensure the existence of an NM utility function and a prior such that the SEU
of the strategies reflects the preference ordering.4

Therefore, much of the discussion has centered on the Bayesian system of axioms.
Nevertheless, we postpone any comments on the axioms until the very end of the
paper. Instead, we focus on the fact that Bayesianism is empty. As a positive theory,
it implies no “operationally meaningful theorems” (OMTs), i.e., consequences that
could potentially be refuted by observations.5 Any behavior can be rationalized on
the basis of some prior, even if the NM utility function is given.

For this reason, Bayesianism is also empty as a normative theory. Assume that
Mike the Manager asks Betty the Bayesian for advice. Betty cannot take Mike’s
current beliefs for granted because it is an open question which beliefs are rational
given Mike’s previous experiences. So it is natural for Mike to ask whether there are
any OMTs: Given what I know about the past, and given my NM utility function,
is there anything a rational person would not do? Is there a sequence of future
choices, including reactions to new information, that can be classified as irrational?
Since the answer is no, Bayesianism is empty as a normative theory. To a Bayesian,
there is no such thing as irrational behavior.

Although several such rationalizability results have appeared in recent years,
they seem to be not widely known, and their implications are not yet fully appreci-
ated.6 The result discussed in the present paper assumes that an agent considers a
simple chaotic process as explanation for observed phenomena. Such explanations
are actually considered in economics and elsewhere; they cannot be dismissed as un-
reasonable. Chaotic systems have the typical features of very rich sets of hypotheses.
Since perfectly rational agents by definition consider such very rich sets, they are
necessarily, i.e., independently from the actual complexity of their environment, in

4Preferences over strategies entail preferences over objective-probability distributions of out-
comes (expressed by the NM utility function) and beliefs (expressed by the prior). It is funda-
mental to Bayesianism that preferences in the narrower sense and beliefs are separable (Binmore
1993: 207, Aumann 1987: 13 n. 13). This implies that an agent can adopt an NM utility function
independently from her beliefs, or beliefs independently of her NM utility function. On the former
case, see also Binmore (1993: 207) on Savage and “massaging the priors”. The latter case is il-
lustrated by Savage’s own use of the sure-thing principle as a device for (implicitly) adjusting his
evalutation of NM utilities in the Allais Paradox (where probabilities are given); cf. Pope (1991).

5Samuelson’s (1947: 3) phrase, rather than “empirical content”, is used to remind readers of
the present paper’s close relation to Samuelson’s work on revealed preference (see 2.3 below).

6The present paper is based on Albert (1996, 1999). A slightly different result is contained in
Nyarko (1997), who refers to an unpublished 1992 paper of J. S. Jordan for yet another version.
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the situation of a person trying to predict a chaotic system. This implies that their
expectations are completely arbitrary. Muth’s (1961) conjecture that the weak REH
provides a solution to the problem of expectations formation is thus refuted, at least
if the weak REH is identified with Bayesianism, as it is usually done in economics.

Section 2 reviews the literature and discusses some prima facie arguments against
the view that Bayesinism is empty. Section 3 introduces an abstract decision prob-
lem, section 4 a set of hypotheses based on a simple chaotic system. Section 5 shows
that this set can be used to rationalize any strategy. Section 6 concludes with a
consideration of arguments against the position, taken in the present paper, that
the emptiness of Bayesianism is a serious flaw.

2 A Folk Theorem

Presumably, practitioners tend to believe that there are objectively wrong decisions
or mistakes and that decision theory provides the means to avoid them.7 Theoreti-
cians think differently. It is the folk theorem of decision theory that the notion of
rationality employed in economics is “weak”.8 As its counterpart in game theory,
the theorem is of unknown origin and implies that (almost) anything goes. Until
quite recently, there has been no general proof, but proofs for finite cases are trivial.

There is a difference, however, between the claim that Bayesian rationality is
“weak” and that it is completely empty. We therefore discuss three prima facie
objections to the latter view. 1. It is sometimes suggested that prior beliefs of ra-
tional agents are not completely arbitrary. 2. Bayesians have always argued that
their definition of rationality implies the rejection of certain other decision rules like
the maximin rule; conflict, however, presupposes content. 3. Bayesianism encom-

7See, e.g., Bernstein (1996: 336). Goldman (1999: 76) also seems to believe that the so-
called Dutch Book argument demonstrates that Bayesianism protects against unnecessary losses.
However, the argument assumes a situation without any uncertainty concerning gains or losses
and, therefore, completely misses the point when used as a defense of Bayesianism.

8Hahn (1996: 186) writes that rationality “buys only a small bit of an answer” in an intertem-
poral context since it has to be supplemented by a theory on agents’ beliefs. Blume and Easley
(1995: 26) conclude that the content of Bayesian rationality mostly derives from restrictions on the
set of beliefs. Bicchieri (1993: 14, esp. n. 9) restricts the predictive usefulness of Bayesian rational-
ity to stable environments and choice situations familiar to the agent, and mentions convergence
problems in the case of complicated priors. Arrow (1990: 29) writes that the rationality hypothesis
by itself is “weak” and that its force derives from supplementary hypotheses. By varying utility
functions for given beliefs, Ledyard (1986) demonstrates that Bayesianism is empty for a quite
general game-theoretic setting. However, he is still convinced of its value as a normative theory
(Ledyard 1986: 60, 80f). Bray (1983: 123f) quotes Lucas to the effect that Bayesianism “in many
applications” has “little empirical content” but defends it on account of its convergence properties.
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passes the theory of demand, which is known to imply OMTs, the so-called axioms
of revealed preference.

2.1 Rational Priors

Some Bayesians defend the view that, even though there are no restrictions on
priors, all rational agents should hold the same subjective probabilities if they have
been exposed to the same experience (e.g., Aumann 1987: 7, 13f). This view is
known as the Common Prior Assumption (CPA). Aumann (1987) refers to Savage
in this context (without giving a reference) and conjectures that Savage would have
accepted the CPA. I disagree (cf. Savage 1962: 11, 13, 14). However, Savage was
convinced that in practice experience often leads to convergence of opinion. But
this is not a starting point for Bayesianism; it is a fact in need of explanation. For
convergence, one needs priors that are not too different. The CPA just begs the
question in assuming identical priors.

The CPA makes sense only if there exist canonical or rational priors before any
experience. This leads to the classical problem of whether there is an acceptable
“principle of insufficient reason” determining probabilities before experience. This
idea, going back to Laplace, has been criticized by many authors (cf. Leamer 1978:
11, 22-39, 61-63, 111, 114; Howson and Urbach 1989: 45-48, 285, 289; Earman
1992: 14-17, 138-141). It had been revived by Keynes and others in the form of
a theory of “logical” probabilities, i.e., uniquely determined a priori probabilities
of the logically possible hypotheses. One of the arguments in favor of Bayesianism
has been the discovery that such probabilities do not exist.9 It seems not to be a
promising way of further development to revive this idea again. As the history of
the subject presents itself, the burden of proof that there is an acceptable “principle
of insufficient reason” rests with those in favor of the CPA.

2.2 The Dominance Principle

Clashes between Bayesianism on the one hand and decision rules for behavior under
uncertainty like the maximin rule on the other hand are due to the fact that the
latter violate what we will call the dominance principle.10 We can use the NM

9This appears already to have been a conjecture of Ramsey, the earliest of the modern Bayesians,
who made this argument against Keynes; cf. Hacking (1990: 165, 170). The Keynesian program was
taken up later by Carnap; it was intended to provide one of the cornerstones of logical positivism.
There is a widespread agreement today that this program foundered in just the way Ramsey
conjectured: there are no logical probabilities; cf. Howson and Urbach (1989: 48-56).

10This clash has most often been stressed in connection with statistical decision theory, see, e.g.,
Lindley (1972: 13-15).
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utility function to define a set of strictly dominated strategies. A strategy A is
strictly dominated if and only if for every choice of prior probabilities, there always
exists at least one strategy with a higher SEU than A. Bayesianism implies one
restriction on behavior for a given NM utility function, namely, that no strictly
dominated strategy is chosen. Let us call this restriction the dominance principle.

We illustrate this principle for a case of three strategies leading to different con-
sequences in two mutually exclusive and jointly exhaustive states (figure 1). Given
an NM utility function, the three strategies can be represented by their utilities
in a two-dimensional coordinate system. Bayesian analysis implies the linearity of
the indifference loci in this diagram; the maximin criterion would lead to L-shaped
indifference loci. Therefore, the latter criterion allows for choices that are ruled out
by Bayesian analysis.
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Figure 1: A strictly dominated strategy. The axes measure the NM utilities of three
strategies in the case of two mutually exclusive and jointly exhaustive states. The
dominated strategy A3 is selected by the maximin criterion.

The set of strictly dominated strategies is by definition independent of beliefs.
Nevertheless, the dominance principle yields no OMTs. Identifying strictly domi-
nated strategies already requires at least some knowledge about one’s environment.
If the NM utility function is given, it is always possible to imagine, for each strategy
A, a state s such that A yields a higher utility than any other strategy if s holds.
The assumption that a strategy is strictly dominated means that logical possibilities
are excluded. If Bayesianism is empty as a theory of learning, the dominance princi-
ple yields neither predictions nor advice, because before anything has been learned,
logical possibilities cannot be excluded.
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2.3 The Revealed-Preference Approach

In economics, it is usually taken for granted that economic theory only provides
assumptions about the general structure of agents’ preferences, and that the details
necessary for making predictions have to be gathered by observation. According
to this view, economic theory provides a framework that allows us to use empirical
observations to make predictions, much as Newton’s theory allows us to use empirical
observations to determine the masses of the planets, which in turn can be used to
predict the planets’ movements.

An important question in this context is which kind of observations can be used.
The economic tradition allows only the use of observations about actual choices.
This is consistent with the idea that—presumably as a result of selective pressure—
agents act as if they were perfectly rational, or at least as if deviations from per-
fectly rational behavior were unsystematic. The as-if approach views rationality as
a feature of behavior, not as a feature of the process of deliberation.11

This attitude is the basis of the revealed-preference (RP) approach to the theory
of demand (cf., e.g.,Varian 1992: 133). The approach focuses on OMTs—usually
called axioms of RP since they exhaust the theory—implying that information about
past choices can be used to rule out certain future choices if preferences have a certain
structure.

The theory of demand implicitly assumes that observer and agent share true
beliefs in a single deterministic model. Bayesianism can only profit from the results
of this theory if the observer can check whether the agent holds appropriate beliefs.
According to the economic tradition, such a check must be based on observations
of actual choices and nothing else. Hence, an extension of the RP approach to the
case of uncertainty is required. Such an extension would provide OMTs demonstrat-
ing how, assuming the axioms of Savage (1954) or Anscombe and Aumann (1963),
information about past choices can be used to rule out certain future choices.

There are some extensions of the RP approach, but none that cover Bayesian
learning.12 The present paper addresses this issue in a very general way. As a
concession to Bayesianism, knowledge of the NM utility function summarizing an

11Cf. Simon’s (1976) characterization of economic rationality as “substantive” rather than “pro-
cedural”, which seems to be meant as a clarification of Friedman’s (1953) as-if approach.

12Border (1992) develops an RP approach to choice among lotteries with monetary rewards.
The observer knows only that more money is preferred to less. If observer and observed agree
on all (objective) probabilities, any choice behavior that is not stochastically dominated can be
rationalized by postulating a suitable utility function. The RP approach of Green and Osband
(1991) is based on assumptions that deviate from Savage’s (1954) framework in several ways. A
direct comparison of results is therefore difficult. Kim (1992) considers choice under uncertainty
but excludes learning, i.e., conditionalization on past observations.
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agent’s behavior under certainty and risk is granted. This leaves only beliefs as
missing determinants of behavior. An RP approach to Bayesian learning requires
OMTs implying that, given the NM utility function, information about past choices
can be used to rule out certain future choices.

3 Questions

The technical aspects of our problem, and the way to a solution, can be explained
with the help of a simple decision problem; generalizations are trivial (see 5.2 below).

Adam & Eve and the Money Spinner. Adam the Agent owns a mysterious black box
connected with a screen and a keyboard. The screen displays either 0 or 1; in fixed
intervals the screen goes black and then again shows one of the two digits. The tth
observation is denoted by xt. At every point in time t = 0, 1, . . . ,∞, Adam places
his bets on the next digit by typing in a number yt ∈ {0, 1, ..., N}. Doing nothing
implies yt = 0. So the sequence of events is as follows. At t = 0, Adam chooses y0.
At t = 1, x1 appears and Adam chooses y1. And so on. At time t, Adam chooses
yt. If xt+1 = 0, the black box produces yt perfect one-dollar notes. If xt+1 = 1, it
produces N − yt equally perfect one-dollar notes. Adam cares only for the money
he receives; his NM utility function ν : [0, N ] 7→R at each point in time is increasing,
strictly concave, and finite. Adam’s information at time t encompasses all the facts
just explained and the history of digits and choices up to time t.

Eve the Economist observes Adam. Her information at time t coincides with
Adam’s; specifically, she knows his NM utility function. We simplify the problem
by assuming that both Adam and Eve know (i.e., rightly believe) that Adam’s
choices have no influence on the sequence of digits appearing on the screen. �

Let X be the set of all finite sequences or histories of observations (0s and 1s).
These sequences are of varying length; `(x) is the length of x ∈ X. Similarly, let
Y be the set of all finite sequences of choices (natural numbers from 0 to N), with
`(y) = t as the length of y ∈ Y . In both cases, we include the sequences of zero
length (“vacuous” histories). The set XY denotes all pairs (x,y) from X × Y with
`(x) = `(y).

The following three questions define the problem we are interested in by recourse
to the situation of Adam and Eve.

Question 1 Can Eve exclude some histories (x,y) ∈ XY as inconsistent with the
assumption that Adam is a perfectly rational Bayesian agent?

Question 2 Can Eve, on the basis of finitely many observations x ∈ X, give good
advice to Adam from a Bayesian point of view?
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Question 3 Assume that Eve is a Bayesian-minded economist who has observed
a sequence of digits and choices (x,y) ∈ XY . Is there any restriction on Eve’s
beliefs concerning Adam’s future behavior resulting from the hypothesis that Adam
is a perfectly rational Bayesian agent?

Question 1 concerns Bayesianism as a positive theory that should yield predic-
tions of Adam’s behavior. Question 2 concerns Bayesianism as a normative theory
that could be used by Eve to advise Adam. Question 3 concerns Bayesianism as a
methodology used by Eve to analyze Adam’s behavior.

Of course, all three questions are strongly interrelated. If Adam can rationalize
any choice of strategy, question 1 must be answered in the negative. The same
goes for question 2. If any strategy can be rationalized, there is nothing a Bayesian
advisor can say except “Do what you want”.

The answer to question 3 is slightly more involved. There is a difference between
questions 1 and 3. A negative answer to question 1 implies that no OMTs exist.
But a Bayesian could still claim that Bayesianism as a methodology allows one
to conclude that certain sequences of digits and choices become very improbable
if Adam is rational. If that were possible, it would provide a Bayesian argument
against the requirement that positive theories should provide OMTs.

Let us shortly summarize the Bayesian analysis of Adam’s problem. First of
all, Adam should choose a set H of mutually exclusive hypotheses, each of which
implies objective probabilities for all potential future observations. Then, he should
choose a subjective probability measure or prior µ on (a σ–algebra of subsets of) H.
The prior µ is chosen such that it generates a preference ordering on the set of all
strategies. Hence, we know that, for every history x ∈ X, the pair (H, µ) implies
conditional probabilities Pµ

(
x`(x)+1 = i |H ∧ x

)
, i = 0, 1.13

Adam knows that there is no influence from his choice at one point in time
to consequences at other points in time. The only connection between choices is
learning. Given a “forecast function” (Nyarko 1997: 181) ρ : X 7→ [0, 1] assigning
the probability p = ρ(x) to the event x`(x)+1 = 0 (the next digit is 0), the action
at t = `(x) can be considered separately from other actions. Adam maximizes his
SEU, solving the problem

max
y
{pν(y) + (1− p)ν(N − y) : p = ρ(x), y ∈ {0, . . . , N}} . (1)

13The symbol ∧ in H∧x denotes the conjunction. Read as statements, H is a (possibly uncount-
able) disjunction of hypotheses, and x is equivalent to the conjunction of statements “At time s,
xs is observed”, s = 1, . . . , `(x). If `(x) = 0, H∧x is of course equivalent to H. If Adam observes a
sequence x with subjective probability 0, the conditional probabilities Pµ

(
x`(x)+1 = i |H ∧ x

)
are

not defined. He is then free to choose a new prior distribution, which does not improve the chances
of predicting his actions. However, we can exclude this case (see below).
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His optimal strategy, then, is described by the function y : X 7→{0, . . . , N} assigning
the utility-maximizing choice to each conceivable history:

y(x)
def
= arg max

y
{pν(y) + (1− p)ν(N − y) : p = ρ(x), y ∈ {0, . . . , N}} (2)

His actual choice y`(x) of course depends on the actual history x.
Bayesian rationality requires that Adam’s forecast function reflects some prior:

∃(H, µ)∀x ∈ X
[
ρ(x) = Pµ

(
x`(x)+1 = 0 |H ∧ x

)]
(3)

If the strategy y(x) is optimal given the set of hypotheses H and the attached prior
µ, the pair (H, µ) is a rationalization of y(x).

The analysis is simplified by the fact that a strategy can be rationalized, if at all,
without assuming any of the conditional probabilities to be 0, because Adam chooses
between discrete values. Given discreteness, any decision that is optimal if some
event has zero probability will also be optimal if the probability of the respective
event is small enough. Of course, all policy variables in real-world decision problems
are discrete since the precision of measurement is always finite. Moreover, each
possible choice y in (1) is optimal for some values of p. If, therefore, we can find
a rationalization for arbitrary forecast functions ρ : X 7→(0, 1), where (0, 1) is the
open unit interval, we can rationalize any strategy y : X 7→{0, . . . , N}.

4 The Chaotic Clock

The problem in finding rationalizations is that a set of hypotheses might not be rich
enough to provide a rationalization for a given strategy. However, there are very
trivial sets of hypotheses that are always rich enough.

4.1 The Basic Mechanism

Assume that the evolution of the inner states of Adam’s black box follows a deter-
ministic process depending on a starting point. The law of the deterministic process
is the baker-map dynamics, which can be graphically illustrated as the output of a
chaotic clock (figure 2).

There is one pointer that can point to all real numbers in the intervall I = [0, 1),
where the vertically upward position is zero and the vertically downward position
is 1

2
. Initially, the pointer deviates by an angle ω = 2θπ from the vertically upward

position, thus pointing at the real number θ. At t = 1, 2, . . . ,∞, the pointer moves
by doubling the angle ω. If the pointer comes to rest in the first half of the dial and
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Figure 2: A chaotic clock. At each point in time, the angle ω is doubled. When the
pointer is in the first (second) half of the dial, the digit 0 (1) appears on a screen.
The resulting sequence of digits is described by the baker-map dynamics.

points at a number in
[
0, 1

2

)
, the screen of Adam’s black box shows 0; otherwise it

shows 1.
According to the chaotic-clock hypothesis, the inner states of the black box

at t = 0, 1, . . . ,∞ are described by a real variable, the pointer position zt ∈ I.
The inner states evolve deterministically, but it can only be observed whether the
pointer position is zt ∈

[
0, 1

2

)
or zt ∈

[
1
2
, 1

)
. These two states result in xt = 0 and

xt = 1, respectively. The deterministic law by itself does not allow for a prediction
of future observations; an assumption concerning the starting point z1 = θ is also
necessary. Thus, there is a set of hypotheses, one for each starting point θ ∈ I. The
corresponding dynamical system is the baker-map dynamics:14

(a) xt = g(zt)
def
= 2zt div 1

(b) zt+1 = h(zt)
def
= 2zt mod 1

(c) z1 = θ

(4)

Note that the chaotic clock cannot produce an unbroken infinite sequence of 1s.
If the pointer is in the second half of the dial (thus generating a 1 on the screen),
doubling the angle ω moves the pointer beyond 0, thus leading to a smaller value

14“div” denotes integer division; “mod” denotes the indivisible rest of the integer division, i.e., x

mod n
def= x−(x div n). On the baker-map dynamics, see Ford (1983), Devaney (1989: 18 example

3.4, 39, 52) and Schuster (1988: 107f). The graphical illustration is due to Davies (1987: ch. 4).
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of ω. As long as the pointer comes to rest in the second half of the dial, ω falls at
every tick of the clock with increasing rates, until, after a finite number of ticks, the
pointer is in the first half of the dial, which implies that the screen shows 0.

4.2 Falsification Dynamics

Assume that Adam believes that his black box contains a chaotic clock. In order
to analyze the consequences of uncertainty concerning θ, Adam has to know how xt

develops for a given θ. This is very simple in principle. Every θ ∈ I can be expressed
as

θ =
∞∑

n=1

θn

2n
= 0.θ1θ2θ3 · · · θt · · · (5)

where θn is 0 or 1 (dyadic development). In order to enforce uniqueness of the
representation (5), we require infinitely many 0s on the right-hand side. Thus, 1

2

should be represented as 0.10 = 0.1 and not as 0.01 (where the bar denotes infinite
repetition).15

The sequence generated by the chaotic clock is just the dyadic development of
the starting point, i.e., xt is equal to θt in (5). This follows from two mathematical
facts. (i) We have θ ≥ 1

2
if and only if θ1 = 1. (ii) Doubling θ shifts the point in the

dyadic development one step to the right; the modulo function sets the digit before
the point to 0, thus ensuring that the new value is again smaller than 1.

The first digit θ1 in (5) determines whether θ is smaller than 1
2

or not. Hence,
when Adam observes the first digit x1 = θ1, he finds out whether the starting point
θ is in the first half (x1 = 0) or in the second half (x1 = 1) of the dial. The second
digit places the starting point into one of the four quarters. For example, if x1 = 1
and x2 = 0, the starting point must be in the third quarter

[
2
4
, 3

4

)
. And so on. The

sequence of digits corresponds to a sequence of bisections of the set I of potential
starting points; with each further digit, the location of the starting point is narrowed
down to the upper or lower half of the remaining interval on the dial. At time t,
Adam has made t observations revealing one of the 2t basic intervals

It(m)
def
=

[
m

2t
,
m + 1

2t

)
, m ∈

{
0, . . . , 2t − 1

}
(6)

as the location of the starting point θ. In infinite time, these bisection steps converge
to θ.

In other words, each observation falsifies half of the remaining hypotheses con-
cerning the starting point θ. Hence, Adam’s beliefs converge to the truth if he is

15On coin tossing and dyadic development see also Brémaud (1988: 28-31).
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right in assuming that the black box contains a chaotic clock. This does not mean,
however, that his chances of predicting the future improve over time. Obviously,
knowing the first t digits of θ’s dyadic development is no help in predicting the next
digits.

4.3 Souping up the Clock

The chaotic clock places one restriction on Adam’s system of beliefs: it is impossible
that the number of 0s is finite. In order to get rid of this restriction, we assume
that the angle between the pointer and the zero position is not doubled as before
but quadrupled:

(a) xt = g(zt)
(b) zt+1 = h(2zt)
(c) z1 = θ

(7)

The functions g, h are defined as in (4). For any starting point θ with dyadic devel-
opment (5), the original system (4) yields the observations xt = θt. The modified
system (7) yields xt = θ2t−1, i.e., every second digit of the the starting point’s dyadic
development is irrelevant. Therefore, starting points like θ = 0.10 or θ = 0.1011 gen-
erate an unbroken infinite number of 1s although they feature infinitely many 0s as
required.

Almost the same analysis as before applies to the modified chaotic clock. Since
every second digit of the starting point’s dyadic development never appears on the
screen, an infinite number of starting points lead to the same sequence of observa-
tions. The first t observations determine 2t−1 basic intervals of length 1

24t−2 , one of
which contains the starting point. Each basic interval is as rich as the unit inter-
val. It still contains points that can produce any kind of extension to the observed
sequence. In other words, the set of hypotheses represented by the set of starting
points is so rich that, for any possible future, there are (actually: infinitely many)
hypotheses consistent with the past and predicting this future. No future develop-
ments can be excluded on the basis of past observations.

Adam’s beliefs still converge to the truth but not to the full truth: the obser-
vations reveal a subset of possible starting points containing the true one. This set
corresponds to a subset of observationally equivalent hypotheses, one of which is
true. As before, convergence to the truth presupposes that the black box actually
contains a modified chaotic clock. If this is not the case, however, the analysis of the
learning process is unaffected since no sequence of observations, not even an infinite
one, is inconsistent with the assumed mechanism.

However, Adam does not know whether the black box actually contains a chaotic
clock. One may ask, then, why he should ever consider such a crazy mechanism.

13



There are several reasons.
First of all, Adam is a perfectly rational being and, therefore, logically omniscient

(cf. Earman 1992: 121f). He is aware not only of the chaotic-clock hypotheses but
of many more when he considers the question of choosing a prior. Therefore, the
question should rather be why not more hypotheses are considered.

Secondly, if the truth is deterministic, it is observationally equivalent to (7)
(with a specific starting point). Thus, (7) can be viewed as a “reduced form”, as
econometricians would say, of any deterministic theory (plus initial conditions) that
is capable of explaining an infinite sequence of the events in question. In this sense,
the chaotic clock represents all deterministic theories, and Adam’s problem does not
become significantly greater when we add further hypotheses to the set of chaotic-
clock hypotheses.16 Hence, considering the chaotic clock is actually a simplification
(although an insignificant one) of Adam’s problem.

Last but not least, the chaotic-clock model fulfills all the formal requirements
of a scientific theory. It assumes a simple mechanism governed by a law of motion
that produces different results according to the initial position of the mechanism.
While not even the Swiss could actually produce the chaotic clock, processes that
lead to chaotic dynamics are not rare, and imperfect observability can produce the
kind of irregular behavior characteristic of the chaotic clock. Moreover, although the
chaotic-clock model assumes a continuum of starting points (corresponding to more
hypotheses than we could ever consider explicitly), it is less complicated than models
encountered in physics or economics. It would be difficult to find any acceptable
formal requirement that excludes the chaotic clock from consideration.17

Let us call “empirically adequate” those hypotheses that are observationally
equivalent to the truth. Subsequently, convergence to the truth is taken to mean
that, in the limit, the subjective probability of the set of empirically adequate hy-
potheses is 1. If the truth is deterministic, then, convergence to the truth is ensured.

5 Answers

5.1 Adam’s Problem

We turn to the dynamics of probabilistic beliefs generated by the modified chaotic-
clock hypotheses described by (7). The hypotheses form a set H∗, where Hθ ∈ H∗,

16Even adding probabilistic hypotheses would make no difference, as will become obvious below.
17The chaotic clock poses a generalized version of Goodman’s (1955) “new riddle of induction”.

The set of hypotheses considered by Goodman is countable and, therefore, too small to lead to
the problems discussed in the present paper. Using the chaotic clock for presenting the problem
of induction has the advantage that no “gruesome” predicates appear.
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θ ∈ I denotes the single hypothesis that the starting point of the modified chaotic
clock is θ. Since these hypotheses are deterministic, the probabilities P (xt = 0 |Hθ)
are either 0 or 1, i.e., Hθ yields certain or point predictions. Uncertainty enters
via the uncertainty concerning θ ∈ I. As a Bayesian, Adam chooses a subjective
probability measure on (a σ–algebra of subsets of) H∗, and since each hypothesis
in H∗ is represented by a θ ∈ I, we can consider instead a subjective probability
measure on (a σ–algebra of subsets of) I.

Adam needs well-defined conditional probabilities Pµ

(
x`(x)+1 = i |H∗ ∧ x

)
for any

potential sequence of observation x. Hence, he must include all the basic intervals
It(m) in his σ–algebra of subsets of I. We can therefore consider the σ–algebra
generated by the basic intervals (which is just the σ–algebra of the Borel sets). Any
probability measure µ on this σ–algebra then determines the conditional probabil-
ities Adam needs to solve his decision problem. Henceforth, we simply speak of a
probability measure µ on I or, equivalently, on H∗.

We have already seen in section 3 that the central question is if we can find a
rationalization (H∗, µ) for arbitrary forecast functions ρ : X 7→(0, 1). This question
is answered by the following theorem (Albert 1999: theorem 1).

Theorem (Anything Goes) Let H∗ be the set of modified chaotic-clock hypothe-
ses. Consider an arbitrary forecast function ρ : X 7→(0, 1). Then, there exist infi-
nitely many probability measures µ on H∗ such that the rationality condition ρ(x) =
Pµ

(
x`(x)+1 = 0 |H∗ ∧ x

)
holds for all x ∈ X.

In interpreting the theorem, we have to remember that Adam as a perfectly
rational person is always aware of the implications of all the assumptions he is con-
sidering. When choosing the prior µ on H∗, he is aware of the implicit assignments
of numerical values to the conditional probabilities. The theorem says that, in-
stead of choosing a prior on H∗, Adam may as well choose arbitrary conditional
probabilities.18 And since these probabilities can generate any contingent choices
whatsoever, it is immaterial for Adam whether he asks himself “What should I do?”
or “What prior should I choose?”. The Bayesian apparatus provides no restrictions
and therefore no help in making this choice.

Let us consider two simple cases. Adam might, for instance, choose a constant
forecast function ρ(x) = 1

2
for all x ∈ X. This is rationalized by the uniform prior

with density f(θ) = 1 on I. This choice implies that, independently from past
observations x, the probability of 0 and 1 is always 1

2
. Any other constant forecast

function leads to a misleadingly complicated prior distribution that has no density.19

Generalizing slightly, Adam might set ρ(x) = p[`(x)] with an arbitrary function

18Thus, including probabilistic hypotheses in addition to H∗ would not change the results.
19Cf. Brémaud (1988: 29) who, however, discusses only the uniform distribution.
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p : N 7→(0, 1), thus fixing his decision at time t independently from and prior to
any observations. Adam poses as a Bayesian learner but is actually completely
“dogmatic” (and completely unpredictable) in the sense of ignoring any experience.

A Bayesian dogmatic is already unpredictable. A run-of-the-mill Bayesian, who
allows experience to influence his behavior whenever it suits him, is all the more
unpredictable because he has more options. This answers question 1. Bayesian
rationality is empty as a positive theory. Eve cannot exclude any behavior of Adam
on the basis of the hypothesis that Adam is rational in the Bayesian sense. Nor can
Eve give any advice to Adam, even if she knows his NM utility function, since no
strategy is irrational, whatever observations have been made. This answers question
2: Bayesianism is empty as a normative theory.

In relation to the tent-map dynamics (which is mathematically equivalent to
(4)), Blume and Easley (1995: 19f, 36f) show that convergence to the truth need not
mean that predictions improve: if the prior is continuous at the starting point, the
posterior distribution converges to the uniform distribution, implying a probability
of 0.5 for observing 0. Hence, convergence to the truth does not imply convergence
to rational expectations.20

This is an interesting point but not the one we are making. Blume & Easley’s
point provides no argument against Bayesianism (and is not meant to do so), because
no procedure can improve on Bayesian learning in these cases. We can get more
mileage out of the machinery of chaotic dynamics.

In Blume and Easley’s analysis, the true law of the process generating the 0s and
1s is chaotic, and this law is known to the agent. In our analysis, the true law gov-
erning the sequence of 0s and 1s is unimportant. The anything-goes theorem neither
refers to some true law nor places restrictions on the sequence of events observed by
the decision maker. The problem is not the complexity of the environment but the
complexity of a large set of hypotheses. The chaos is in the decision maker’s head.

The assumptions of the present analysis are actually quite favorable to Bayesian-
ism since convergence to the truth (in the empirical-adequacy sense) is ensured. Al-
lowing for probabilistic hypotheses would open up the possibility of non-convergence
to the truth.21 As Gillies (2001) shows, a Bayesian learner might then never discover
that he had dismissed the truth from the outset, which provides a strong argument
in favor of seriously considering a large set of hypotheses.22

20Hence, “merger of opinions” for different persons (cf. Earman 1992: ch. 6) has nothing to do
with convergence of expectations (opinions concerning the future).

21Unfortunately, non-convergence cannot be quite as dramatic as suggested by theorem 2 in
Albert (1999), which is incorrect. Under the conditions of theorem 2, convergence to rational
expectations is ensured although the probability of convergence to the truth may be 0 (as is
typically the case if, e.g., both hypotheses assign a probability of 0.5 to observing 0 in the limit).

22A hypothesis is dismissed from the outset iff it is not in the support of the prior. The support
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5.2 Eve’s Problem

We turn to Eve’s prediction problem, i.e., to the problem of an economist trying to
predict the behavior of rational agents and using Bayesianism as a methodology. If
Eve is a Bayesian herself, she is not overly impressed by the fact that Bayesianism
yields no OMTs concerning Adam’s behavior. The Bayesian methodology allows
a continuum of beliefs between the two categories “ruled out” and “possible” that
are considered when we speak of OMTs. However, this is not going to help Eve.
Her hypothesis that Adam is rational provides no restrictions concerning Adam’s
behavior. Therefore, she is in no better position to predict Adam than to predict
the digits generated by the black box.

For a formal proof, we have to generalize the previous results to larger spaces of
observables. This presents no difficulties.

Eve observes the digits on the screen and Adam’s choices. Moreover, she might
observe other things, like Adam’s facial expression or his pattern of consumption,
that are or are not related to Adam’s behavior. Sticking to our premise that, realis-
tically, all observable variables can only range over a finite set of values, we assume
that Eve’s observable universe can be “digitalized”: each state can be described by
a binary string of 0s and 1s with maximum length n ≥ 2. If the number of different
states is between 2n−1 and 2n for some n, several strings describe the same state.

Again, we look for a set of hypotheses sufficiently rich to allow Eve to rationalize
any forecast. Such a set is again provided by the (modified) chaotic clock. Assume
that Eve considers Adam and the money-spinner as a big black box that displays
one of 2n combination of observables at each point in time. The combinations are
determined by a chaotic clock that makes n angle-quadrupling ticks at each point
in time; the resulting string st of n digits is then revealed as a solid block instead of
a succession of digits. Formally, we can leave the chaotic clock as it is; we just have
to assume that, at each t = 1, . . . ,∞, st is observed instead of just one digit xt:

(a) xτ = g(zτ ) (b) zτ+1 = h(2zτ )
(c) z1 = θ (d) st =

{
x(t−1)n+1, . . . , xtn

}
, t = τ div n

(8)

This dynamical system is identical to (7) except for the fact that at each point in
time t, the string st produced by the last n ticks of the clock is observed. The
sequence generated by the system is the dyadic development of the starting point
with every second digit removed.

is a set with zero-probability complement; sometimes, it is also required that the support’s inter-
section with any open set, if not empty, has positive probability. In our analysis, the support is I
since all open sets are measurable and contain basic intervals, which never have probability 0.
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The chaotic clock is a “theory of everything” for universes the evolution of which
can be described by an infinite sequence of binary string of length n. Since the possi-
bilities of assigning probabilities to sequences are not affected by the fact that these
sequences are now revealed in a blockwise fashion, the previous results still apply:
according to the anything-goes theorem, arbitrary assignments to these probabilities
are possible. This answers question 3. Bayesianism as a methodology is completely
useless in predicting rational behavior because there are no OMTs covering this
behavior. Eve’s expectations concerning Adam’s behavior are completely arbitrary.

For example, Eve may decide to view Adam as attaching equal probabilities to
two arbitrary hypotheses like “The probability of xt = 0 is 1

5
” and “The probability

of xt = 0 is 2
5
” while she herself attaches a probability of 1

2
to xt = 0. She then can

find a prior such that exactly the conditional probabilities implied by this view will
hold, no matter what happens.

Moreover, the analysis of Eve’s problem shows that the restriction of Adam’s
problem to the prediction of single digits is immaterial. Everything works as before
as long as there is a maximum amount of information he can access at each point
in time.

6 Conclusions

Bayesian rationality becomes empty if the decision maker considers a set of hy-
potheses that is as large as the set described with the help of the chaotic clock.
Whatever the actual process generating a sequence of observations, considering a
chaotic-clock explanation already implies that any experience can be accommodated
without implications for expectations concerning the future. The inclusion of further
hypotheses does not add to the complexity of the learning problem.

This is just another version of the problem of induction. Logically, one can never
infer the laws governing the world from a finite number of past observation. While
many theories may be eliminated over time, it is quite trivial that there always
remain enough theories consistent with any kind of future. The so-called pragmatic
problem of induction says that learning, if guided by experience and deductive logic
alone, yields no restrictions for decision making.23 The anything-goes theorem shows
that Bayesianism, although employing more than just deductive logic, cannot solve
the pragmatic problem of induction either.

This result is no surprise once it is clear how many degrees of freedom Bayesian-
ism leaves to the decision maker in setting up the initial beliefs. But it is surprising

23Cf. Musgrave (1989: section 4) and Miller (1994: 20-23, 38-45), whose solution rests on the
assumption that it is possible to reduce the number of acceptable theories drastically.
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that a sufficiently rich set of hypotheses can be introduced in such a simple and com-
pact way. If not much sophistication is needed to experience the problem generated
by too many logical possibilities, maximum sophistication or perfect rationality will
necessarily lead to this problem.

It is a mathematical fact that any strategy can be rationalized even for a given
NM utility function. Several arguments might be raised against the position, taken
in the present paper, that this fact speaks strongly against adopting Bayesianism as
a positive or normative theory. Specifically, four arguments seem to be important.
Their discussion will conclude this paper.

6.1 Supplementing Bayesianism

It is not necessarily alarming if a theory is devoid of empirical content. As long as
the theory is not analytic, it might still be possible to supplement it by further hy-
potheses, creating a larger theory the empirical content of which comes neither from
the original theory alone nor from the supplement alone. The same goes, mutatis
mutandis, for a normative theory. Even if Bayesianism allows one to rationalize any
strategy, there might be supplementary rules that distinguish between good and bad
rationalizations.24

However, such supplementary rules are equivalent to a principle of insufficient
reason. This can easily be shown. Prima facie, there seem to be two different
options. Supplementary rules or hypotheses providing content can either a) restrict
prior beliefs on the basis of experience or b) restrict prior beliefs without any basis
in experience.

However, option a) is really not different from option b). Assume that there is a
rule R that restricts the prior on the basis of experience. Thus, for every set of data
E, the rule R selects a prior. This is exactly what Bayesian updating does on the
basis of a still earlier prior chosen before E becomes known. We have seen that a
decision maker can choose the prior before experience such that, for every set of data
E, an arbitrary predetermined posterior results. Thus, whatever the rule R, a prior
can be chosen before any experience that is in conformity with the recommendations
of R. It follows that R can be replaced by restrictions on the admissible set of priors
before any experience; we are in effect left with option b).

A rule determining a prior, or at least restricting the choice of priors, without
any basis in experience is a “principle of insufficient reason”. As has been argued
before, Bayesianism is the product of a history of failures to provide such a principle.
Thus, embracing option b) looks not very promising for normative Bayesianism.

24Nyarko (1997: 176) makes this point but just provides results concerning the implications of
different restrictions placed on priors.
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For Bayesianism as a positive theory, of course, it would be irrelevant whether
a “principle of insufficient reason” looks reasonable or not as long as the package
is successful empirically. However, this kind of success is missing so far, or at least
this seems to be the public opinion in economics.

Given the record of Bayesianism as a positive theory of behavior, the advocates
of Bayesianism in economics have stressed Bayesianism’s methodological virtues as
a systematic theory of behavior as compared with the “adhockery” of bounded-
rationality approaches.25

As we have seen, Bayesianism does not provide a theory of behavior on its own.
Without a theory of priors, the actual hypothesis in each application must needs be
chosen in an ad hoc fashion by selecting a prior or an admissible set of priors. Thus,
Bayesianism as it stands is not methodologically superior to the bounded-rationality
approach. It might be true that we can guess in each application what the beliefs
of the agents will be. On the other hand, we might equally well guess which of a
set of rules of thumb they are likely to use. The degree of adhockery on both sides
seems comparable.

6.2 Bayesianism as Adaptation

Another defense of Bayesianism is the idea that Bayesian perfect rationality might
be an idealization anticipating—prematurely, so to speak—the long-run effects of
adaptation and training. This means that selective pressures favor Bayesian perfect
rationality in the long-run.

Let us compare the hypothetical fate of a perfectly rational with that of a bound-
edly rational agent. Let us call these hypothetical individuals Priscilla and Brian,
respectively. Brian is not logically omniscient; he does not consider a set of hy-
potheses sufficiently rich to rationalize any behavior. Brian starts with a restricted
set of hypotheses, and, for whatever reasons, there are only some priors that ap-
peal to him. Moreover, he is bound to make logical mistakes; thus, even if he tried
to maximize his subjectively expected utility, he would often fail to recognize the
subjectively optimal actions. On the other hand, Brian might just adopt some rule
of thumb for decision making and ignore his own beliefs. Would Brian have any
disadvantages as compared with Priscilla? Will the Brians of this world either learn
to mimick Priscilla’s cleverness or vanish in the long run?

It seems not, at least from a Bayesian point of view. The difference between

25For this argument and the next, cf. Selten’s account of a fictitious discussion between exponents
of the different approaches to the explanation of behavior, where the Bayesian defends his position
by these arguments (Selten 1989: 5, 11, 21). Selten introduces several counterarguments, which,
however, seem to be based on the assumption that Bayesian rationality has content.
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Brian and Priscilla has nothing to do with the strategies they pick and, conse-
quently, nothing with their success. The difference is just the extent to which their
choices can be rationalized in terms of their beliefs. In fact, both might choose the
same actions under identical circumstances. It is not as if the rules of Bayesian-
ism offered protection against mistakes that could be identified as such by clever
Priscilla. To Priscilla, there are actions that are mistaken in the light of one’s beliefs
but no actions that are mistaken just in light of the known facts. Priscilla is able to
rationalize any behavior; even if Brian were unable to do the same, she could do it
for him.

Thus, while there might be selective pressure to avoid certain kinds of behavior,
there cannot be any selective pressure in favor of perfecting the rationalization of
behavior. Nobody stands a better chance in any competition just on account of
being a Bayesian. Of course, among Bayesians, there might be selective pressure
against certain priors. But this is a completely different point.

The idea that there is selective pressure in favor of perfect rationality is histori-
cally connected with the as-if defense of the rationality postulate. The as-if defense
has been the war cry of empiricist positive economics: “Never mind how people
actually think; when it comes to action, they behave as if they were rational.” The
anything-goes theorem robs the as-if defense of any empiricist appeal, at least if
rationality is taken to be Bayesian rationality. The statement “people behave as if
they were Bayesians” turns out to be analytic; it boils down to “people do whatever
they do.” The adaptationist argument has been used to defend the as-if argument:
Why should people behave as if they were rational? The adaptationist answer: Be-
cause those who do are more successful in the long run than those who do not.
Obviously, this argument, if applied to Bayesian rationality, wrongly presupposes
that Bayesian rationality helps to avoid mistakes.

6.3 Logic, Coherence, and the Axioms

Almost everybody agrees that deductive logic and logical consistency are valuable.
However, deductive logic restricts only the structure of beliefs and not the choice of
strategies. One might argue, then, that it cannot be held against Bayesianism if the
Bayesian logic of probabilistic beliefs and the corresponding notion of consistency
(often called “coherence”) display the same weakness.26

This argument, however, is insufficient to defend Bayesianism. Logical consis-
tency serves a purpose. Beliefs cannot possibly be true if they are inconsistent.
Thus, if one wants truth, logical consistency is necessary. An analogous argument

26Analogies between Bayesianism and deductive logic are stressed by Howson (1997).

21



in favor of Bayesianism would have to point out some advantage of coherence un-
available to those relying on non-probabilistic beliefs and deductive logic alone. Such
an argument is missing.

It is true that Bayesianism provides a logic of beliefs that rational persons must
respect—if and only if their beliefs take the form of subjective probabilities. Those
who reject this view—Popperians, classical statisticians, and others—can always
point out to a Bayesian that their procedures could be rationalized on Bayesian
grounds. The argument that the rationalizing prior might be “bad”—e.g., assign a
positive probability to hypotheses they do not consider in earnest—will not worry
them since for them there are no good priors anyway. In their view, beliefs just do
not take the form of a probability distribution.

Of course, it is a theorem that the beliefs of rational agents should take the
form of probabilities, not an assumption. The theorem follows from the axioms for
preferences on the set of all strategies. If one argues that beliefs need not take the
form of probabilities, the real question from a Bayesian point of view is, What’s
wrong with the axioms?

In my opinion, the axioms are quite reasonable if one is looking for a complete
preference order on the set of all strategies. In the case of decision making under
certainty or risk, a complete preference order might indeed be helpful.27 But this is
different in the case of choice under uncertainty.

Consider the following thought experiment. Adam has to choose from a menu
in a restaurant. He orders chicken because he prefers it most. However, chicken is
out. If pork was the second-best choice before, it is the best choice under the new
conditions. A complete preference order means that he has decided in advance what
to order if items are deleted from the menu.

There is no corresponding thought experiment for choice under uncertainty.
Bayesian coherence amounts to a preference order among all conceivable strate-
gies, where each strategy specifies the reactions to any new information. Hence,
the reaction to the information that something is not available after all is already
part of the chosen strategy. The preference order among the discarded strategies is
therefore irrelevant by definition of the term strategy. Bayesianism not only is no
help in choosing a strategy; it additionally requires that one chooses an order among
the remaining irrelevant strategies. From this point of view, Bayesianism is worse
than useless.

27Even then, rational choice does not require a complete preference order. Look at a simple
example. Which of the following options would you prefer: losing your left hand, your right foot,
or $ 10? I find the choice easy although completely ordering the alternatives is beyond me.
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