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ABSTRACT

According to Fisher, a hypothesis specifying a density function for X is falsi®ed (at the

level of signi®cance a) if the realization of X is in the size-a region of lowest densities.

However, non-linear transformations of X can map low-density into high-density

regions. Apparently, then, falsi®cations can always be turned into corroborations (and

vice versa) by looking at suitable transformations of X (Neyman's Paradox). The

present paper shows that, contrary to the view taken in the literature, this provides no

argument against a theory of statistical falsi®cation.
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1 The problems of statistical falsi®cation

From a theoretical perspective, statistical inference is a serious problem for

falsi®cationism. Actual tests of scienti®c hypotheses in most cases involve

statistical arguments. Falsi®cationism is therefore plausible only if it can deal

with statistical hypotheses. However, there is no falsi®cationist theory of

statistical inference that is accepted even by falsi®cationists.1

Except for the trivial case where a zero-probability event is observed, a

falsi®cation of a statistical hypothesis presupposes the choice of a rejection

region, that is, an event that is possible under the hypothesis in question but

the observation of which is nevertheless taken as a falsi®cation.2 Following

Popper ([1984]) and Gillies ([1971], [1973]), the rejection region is to be
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1 Forster ([1995], p. 402) explains the attraction of Bayesianism in philosophy of science by the
fact that the logic-based accounts of scienti®c inference (which include falsi®cationism) have
nothing to say about statistical problems. Nevertheless, statistical practice is often quite
falsi®cationist in spirit; cf. Gillies ([forthcoming]) on Neyman's use of the w2 test. This causes
problems to non-falsi®cationists, who have to argue that standard and successful practices are
in fact illegitimate.

2 `Rejection' and `falsi®cation' are used as synonyms throughout, although this is not always in
accordance with the use of the term `rejection' in the statistical literature.



chosen according to a methodological rule, a falsifying rule for statistical

inference (FRSI).

According to Neyman and Pearson's ([1933]) theory of statistical inference

(NPT), such a rule should take two kinds of errors into account, usually

called error of the ®rst and error of the second kind. A ®rst-kind error is an

erroneous falsi®cation of a true hypothesis, while a second-kind error is the

failure to falsify a false hypothesis (erroneous corroboration). The risk of a

®rst-kind error can be controlled by choosing a rejection region that has a

su�ciently small probability a, also called level of signi®cance, under the

hypothesis. The risk of a second-kind error has to be controlled by

considering at least one explicit alternative to the hypothesis under test.

The optimal test in the case of only two alternatives minimizes the probability

b of not falsifying the original hypothesis if the alternative is true.

Equivalently, it maximizes the power 1ÿ b.
The NPT is acceptable to falsi®cationists if and only if the complete set of

alternative hypotheses considered is part of the background knowledge, i.e.

can be taken for granted in the context of the inquiry. If, for example, it is

known that a certain procedure guarantees random sampling from a ®nite

population (in the sense of every element of the population having the same

probability to be included in the sample), then there is a ®xed set of

hypotheses concerning the population average of any variable, and these

hypotheses give rise to a ®xed set of statistical hypotheses. The random-

sampling hypothesis is part of the background knowledge, and the set of

hypotheses in which we can use an NP test is determined by the logical

consequences of this basic hypothesis together with certain non-statistical

hypotheses about the population. In such cases, a falsi®cationist can agree

with Neyman ([1965], p. 448) that there is no di�erence between estimation

(choosing the in some sense best hypothesis from a given set) and testing.3

When, however, the question arises (as it must at some stage) as to whether

the basic hypothesis in the background is true, the situation is di�erent. One

may be able to ®nd some test based on a still more general basic hypothesis,

but if the hypothesis under scrutiny becomes more and more general, the

NPT quickly runs out of tests. In practice, therefore, some assumptions are

tested with the help of tests that are quite general but questionable from the

standpoint of the NPT, like the w2 test.

Thus, a falsi®cationist interpretation of the NPT must be based on some

other, more fundamental approach answering the question of how to assess,
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3 For these cases, the interpretation and extension of the NPT by Mayo ([1996]) ®ts into a
falsi®cationist framework. See also Mayo and Spanos ([2000]) for further progress in rendering
the idea of the severity of a test more precise. Note that the falsi®cationist idea of severity of
tests relies on background knowledge that can be (or already has been) tested independently; cf.
Musgrave's ([1974]) discussion of Hempel's raven paradox.



as econometricians are wont to say, the assumptions of the statistical model.

At this level, at least, tests should be independent from alternative hypotheses

(Gillies [1971], [1973], [forthcoming]; Albert [1992]).

The obvious candidate for a theory of statistical falsi®cation, Gillies'

([1971], [1973]) theory, is open to three important objections that have

already been raised against Fisher's theory of signi®cance testing (cf. Fisher

[1990], Spielman [1974]). Consider a statistical hypothesis stating a

distribution function for a one-dimensional random variable (rv). Let us

assume that we have an FRSI specifying, without recourse to alternative

hypotheses, a rejection region for a single observation of the rv. Then the

following three problems must be solved.4

1. Selection of a test statistic. It is not obvious how to extend the FRSI to the

case of n > 1 observations. The solution is to select a one-dimensional test

statistic; however, there are many candidates.

2. Optional stopping. The rule determining the number of observations, the

stopping rule, has a potential in¯uence on the level of signi®cance if the

decision to stop is not independent from the observations (optional

stopping). For any experiment, there are always several interpretations

yielding di�erent signi®cance levels: the conventional interpretation that

assumes stopping to be independent from observations, and many alternative

interpretations specifying di�erent ways of optional stopping. If one

concludes that optional stopping makes a di�erence, the experimenter's

intentions matter for the evaluation of otherwise indistinguishable observa-

tions.

3. Neyman's Paradox. Assume that the rv is continuously distributed with a

density. Fisher's and Gillies' theories select the lowest-density regions as

rejection regions. Non-linear transformations of the rv can map low-density

into high-density regions and vice versa, leading to di�erent decisions on the

basis of the same FRSI and the same observations.

The NPT solves the ®rst and the third problem by appealing to alternative

hypotheses. As already argued, this is not always an option for falsi®ca-

tionists. The second problem also arises for the NPT.

However, these problems pose no insurmountable obstacles for a theory of

statistical falsi®cation. Just adopting some test by convention (e.g. the w2
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4 The problem of selecting a test statistic originally motivated Neyman and Pearson ([1930],
[1933]) to modify Fisher's theory; see also Hacking ([1965], pp. 75±81). On optional stopping,
see Hacking ([1965], pp. 107±9) and Berger and Berry ([1988]). Neyman's Paradox, originally
formulated in connection with the t test, goes back to a 1929 paper of Neyman; cf. Neyman and
Pearson ([1930], p. 101n) and Neyman ([1952], pp. 45±51). The general formulation is due to
Redhead ([1974]).



goodness-of-®t test for discrete hypotheses) goes far in solving the ®rst

problem.5

Mayo ([1996]) argues that one actually should worry about optional

stopping, thus attacking the position of adherents of the likelihood principle

(Bayesians and others) that the insensitivity of likelihood-based inferences to

optional stopping is a point in their favor.

The present note argues that Neyman's Paradox does not arise if one

accepts a reasonable condition concerning the scope of an FRSI.

2 Redhead's version of Neyman's Paradox

The very general nature of Neyman's Paradox has been argued most

forcefully by Redhead ([1974]) in his critique of Gillies' rule. Consider the

hypothesis X � N, meaning that the rv X is distributed according to the

cumulative distribution function N of the standard normal distribution, and

restrict the analysis to the case of a single observation. The so-called Gauss

test at a level of signi®cance 0.05 then requires rejection if xj j51:96. This test

is accepted by Fisher and Gillies, at least in principle. Consider the rv

Y � t�X�, where

t�X� def� Nÿ1 3
2
ÿN�X�� �

, X4 0

Nÿ1 1
2
ÿN�X�� �

, X5 0

�
and where therefore Y � N.6 The same Gauss test can be applied to Y as well.

If X is in the rejection region, Y is not, and vice versa. Thus one can always

reformulate the hypothesis in such a way that it is not rejected by

mathematically the same test.

Redhead's argument is completely general. Transformations that map the

tails of the original distribution to the centre of the new distribution can

always be found. Moreover, Redhead's transformation guarantees for any

unimodal distribution with mode 0 that X and t�X� are distributed identically.

3 A Counterargument

The present paper argues that Neyman's Paradox, taken as a general criticism

of a theory of statistical falsi®cation, misses its target. An FRSI has only one

purpose, namely to render statistical hypotheses falsi®able. Thus, I suggest

that a theory of statistical falsi®cation is based on the following adequacy

condition.
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5 Albert ([1992]) proposes an FRSI for discrete rvs similar in spirit to Gillies' rule but covering
the test-selection problem. This rule selects the multinomial goodness-of-®t test, which can be
approximated by the w2 test under certain conditions. On continuous distributions, see below.

6 t�0� is not de®ned. This is not important, however, since distributions di�ering only w.r.t. zero-
probability events are taken to be equivalent.



Scope of an FRSI. An FRSI only applies to hypotheses that can immediately

be confronted with data (low-level hypotheses).

Real-world measurement processes have ®nite precision. For this reason,

continuous distributions, as far as they are part of the low-level hypotheses

under test, are approximations. This means that Neyman's Paradox does not

arise since it depends on the assumption that real variables can be observed

with in®nite precision. The adequacy condition destroys the basis for the

paradox.

Let us make this clear by reference to an example. Since we consider just

Neyman's Paradox and not the other objections against statistical falsi®ca-

tions, assume that there is an FRSI selecting a test for discrete rvs.

Assume that the theory from which the low-level hypothesis under test is

derived postulates a continuous distribution. For example, one might argue

that the height of humans at age 25 (X) is a continuous rv. We want to test the

hypothesis that this rv obeys a continuous distribution with density f. Since

we focus on Neyman's Paradox, assume that we test the hypothesis on the

basis of a single observation; the argument is completely analogous if we

consider, for example, the mean value of a sample. The actual process of

measurement yields intervals on a speci®c scale, and these intervals have a

certain probability according to the hypothesis. We are back to a test of a

discrete hypothesis where, by assumption, the FRSI unambiguously picks a

rejection region.

4 Di�erent measurement processes

In a presentation of this argument, the following point was raised. It is

physically possible to measure Y � a=X instead of X (where a is some

constant). Let us make this clear by an example.

Assume that for some obscure reason a person's height is measured in the

following way. The person stands upright against a wall. A sliding bar that

projects 20 cm from the wall at a right angle is moved down until it touches

the top of the person's head. The tip of the bar (point A), the point exactly

below it on the ground (point B), and a third point C on the ground 320 cm

from point B form a right-angled triangle (see Figure 1). The length of AB is

the height of the person, the length of BC is known to be 300 cm. From A to

C, a string is stretched. We mark the point D where the height of the string is

exactly 100 cm; the distance of D from C is the rv Y. We have Y � a=X where

a � 30,000.

With Y, we have a transformed variable with density f�a=Y�. Actual

measurements again yield intervals on a certain scale, resulting in a di�erent

discrete hypothesis that can be tested by using the FRSI. It is possible that the
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same observation gives rise to a falsi®cation if X is measured, while a

corroboration occurs if Y is measured. At ®rst glance, then, it seems that

Neyman's Paradox again raises its ugly head.

However, a closer examination shows that this is not true. While there is

one observation, there are two di�erent low-level hypotheses since two

di�erent measurement processes are used. These hypotheses di�er not only

w.r.t. the rv and the density function, but also w.r.t. the if-clause describing

the experimental set-up. It is even possible that one of the hypotheses is true

and the other is false since they are necessarily derived from di�erent

auxiliary assumptions.

For instance, the more complicated process of observing Y may introduce

errors of measurement that are absent when X is observed. The hypothesis

that the density of Y is f�a=Y� is derived under the implicit assumption that

no such measurement errors are introduced by observing Y instead of X, an

assumption which might be false.

But let us grant the truth of all auxiliary assumptions. The situation is

nevertheless di�erent from Neyman's Paradox. In the case of Neyman's

Paradox, we assume that measurements of X and Y result in real values. We

then have to decide how to interpret these results. We do not gain anything by

combining both measurements: we can compute one from the other.

With ®nite precision, the situation is quite di�erent. If we can subject the

same person to both measurement processes, we get a more precise result in
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Figure 1. Measuring Y � a=X, where X is the height of a person.



all those cases where the observed X interval and the observed Y interval are

not mapped onto each other by taking inverse values.

Assume that, in our example, the realization of X is found to be in the

interval �110, 111�. Measuring Y with the same precision, we ®nd an interval

�270, 271�. Combining the information, we learn that the true height is in the

interval �110.70, 111�. Hence, we can test a discrete hypothesis that gives the

probabilities for the smaller intervals for the height of a person ascertainable

by combining both measurements.

Thus, the cases where the results of the tests di�er are just the cases where

we get more precise results from using both methods of measurement. The

combined measurement obviously allows for a more severe test than any of

the single measurements.

Of course, if we have to decide between the two experiments because only

one of them is feasible, it may depend on our decision whether we get a

falsi®cation or a corroboration. But this is only reasonable. The combined

experiment delivers maximum precision. If there are several second-best

methods of measurement, it is plausible that there are cases where these

measurements taken in isolation come to di�erent results. This is not di�erent

from testing a deterministic hypothesis. If you want to test the hypothesis that

swans are white, and if you can only a�ord a trip either to Germany or to

New Zealand, it depends on your decision whether you falsify or corroborate

the hypothesis.

There is only one strange feature of the statistical setting: we are better o�

(in that we can avoid Neyman's Paradox) because we know less (namely,

intervals instead of exact values). But since no problem results from this, we

should be grateful. The working properties of the tests are not a�ected. There

is no ambiguity. Thus, Neyman's Paradox does not exist after all if one

accepts the very reasonable adequacy condition for the scope of an FRSI. It

comes up only in thought experiments where one confronts hypotheses with

actually unobservable events.
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